Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Chương 3 Giới hạn. Hàm số liên tục Lý thuyết Giới hạn của hàm số - Toán 11 Cánh Diều: I. Giới hạn hữu hạn của hàm số tại một điểm Định nghĩa Cho khoảng K chứa điểm \({x_0}\)và hàm...

Lý thuyết Giới hạn của hàm số - Toán 11 Cánh Diều: I. Giới hạn hữu hạn của hàm số tại một điểm Định nghĩa Cho khoảng K chứa điểm \({x_0}\)và hàm...

. Hướng dẫn cách giải/trả lời lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều Bài 2. Giới hạn của hàm số. I. Giới hạn hữu hạn của hàm số tại một điểm...

I. Giới hạn hữu hạn của hàm số tại một điểm

1. Định nghĩa

Cho khoảng K chứa điểm \({x_0}\)và hàm số \(f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Hàm số \(f(x)\)có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Phép toán trên giới hạn hữu hạn của hàm số

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)\(\left( {L,M \in \mathbb{R}} \right)\)thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

3. Giới hạn một phía

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Số L được gọi là giới hạn bên trái của hàm số \(y = f(x)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\). Số L là giới hạn bên của hàm số \(y = f(x)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

*Nhận xét: \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)

II. Giới hạn hữu hạn của hàm số tại vô cực

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} < b\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to + \infty } c = c\), \(\mathop {\lim }\limits_{x \to - \infty } c = c\),\(\mathop {\lim }\limits_{x \to + \infty } (\frac{c}{{{x^k}}}) = 0,\mathop {\lim }\limits_{x \to - \infty } (\frac{c}{{{x^k}}}) = 0\).

III. Giới hạn vô cực (một phía) của hàm số tại một điểm

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {a^ + }\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to a\)ta có \(f({x_n}) \to + \infty \).

Kí hiệu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \)hay \(f(x) \to + \infty \) khi \(x \to {a^ + }\)

- Các giới hạn \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty ,\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \) được định nghĩa tương tự.

IV. Giới hạn vô cực của hàm số tại vô cực

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} > a\) và \({x_n} \to + \infty \) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).

Kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) hay \(f(x) \to + \infty \) khi \(x \to + \infty \).

- Các giới hạn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty ,\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty ,\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \) được định nghĩa tương tự.

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
  • image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Có thể bạn chưa biêt?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Lời chia sẻ Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Loi Giai SGK