Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương 3. Giới hạn. Hàm số liên tục Mục 1 trang 59, 60, 61, 62 Toán 11 tập 1 - Cùng khám phá: B, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số...

Mục 1 trang 59, 60, 61, 62 Toán 11 tập 1 - Cùng khám phá: B, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số...

a, Lần lượt thay giá trị n=1, n= 2, n=3, n=4, n= 10 vào công thức \({u_n} = \frac{1}{n}\) để được các giá trị tương ứng \({u_1}, {u_2}, {u_3}, {u_4}, {u_{10}}\). Gợi ý giải Hoạt động 1, Luyện tập 1, Hoạt động 2 , Luyện tập 2, Hoạt động 3 , Luyện tập 3, Hoạt động 4, Luyện tập 4 - mục 1 trang 59, 60, 61, 62 SGK Toán 11 tập 1 - Cùng khám phá - Bài 1. Giới hạn của dãy số. Cho dãy số (({u_n})) được xác định bởi ({u_n} = frac{1}{n})...B, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số

Câu hỏi:

Hoạt động 1

Cho dãy số (\({u_n}\)) được xác định bởi \({u_n} = \frac{1}{n}\)

a, Tính giá trị của \({u_1},{u_2},{u_3},{u_4},{u_{10}}\)và biểu diễn chúng trên trục số thực dưới đây:

image

b, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số.

c, Bắt đầu từ số hạng thứ mấy thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,01? Câu hỏi tương tự với 0,001; 0,00001.

Hướng dẫn giải :

a, Lần lượt thay giá trị n=1, n= 2, n=3, n=4, n= 10 vào công thức \({u_n} = \frac{1}{n}\) để được các giá trị tương ứng \({u_1},{u_2},{u_3},{u_4},{u_{10}}\).

b, Khoảng cách giữa \({u_n}\) và 0 là giá trị của \({u_n}\).

Khi n tăng thì giá trị \(\frac{1}{n}\) càng nhỏ, khoảng cách giữa \({u_n}\) và 0 càng gần nhau hơn.

Trên trục số, các giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 càng nhỏ.

c, 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.

Lời giải chi tiết :

a, Ta có: \({u_1} = \frac{1}{1} = 1\), \({u_2} = \frac{1}{2}\), \({u_3} = \frac{1}{3}\), \({u_4} = \frac{1}{4}\), \({u_{10}} = \frac{1}{{10}}\).

Biểu diễn trên trục số:

image

b, Khi n tăng thì \(\frac{1}{n}\) càng nhỏ do đó, khoảng cách giữa \({u_n}\) và 0 càng nhỏ khi n tăng.

c, Ta có : 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01. Vậy bắt đầu từ số hạng thứ 101 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.

Tương tự:

0,001= \(\frac{1}{{1000}}\)=\({u_{1000}}\)

Vậy bắt đầu từ số hạng 1001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,001.

0,00001=\(\frac{1}{{100000}} = {u_{100000}}\).

Vậy bắt đầu từ số hạng 100001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,00001.


Câu hỏi:

Luyện tập 1

Cho dãy số (\({u_n}\)) với \({u_n} = {(\frac{1}{2})^n}\)

a, Viết năm số hạng đầu tiên của dãy số đã cho.

b, Khi giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào?

Hướng dẫn giải :

a, Thay các giá trị n = 1, n = 2, n = 3, n = 4, n = 5 vào công thức \({u_n} = {(\frac{1}{2})^n}\) để được năm số hạng đầu tiên của dãy.

\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)

b, Khi n càng tăng thì giá trị \({u_n}\) càng nhỏ. Do đó, khoảng cách \({u_n}\) và 0 càng nhỏ.

Lời giải chi tiết :

a, Ta có :

\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)

Vậy năm số hạng đầu tiên của dãy số là: \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};\frac{1}{{32}}\).

b, Khi n càng tăng thì khoảng cách \({u_n}\) và 0 càng nhỏ.


Câu hỏi:

Hoạt động 2

Cho dãy số (\({u_n}\)) với \({u_n}\)=\(\frac{{3n + 1}}{n}\). Xét dãy số (\({v_n}\)) với \({v_n} = {u_n} - 3\). Viết công thức tính số hạng tổng quát \({v_n}\)và \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Hướng dẫn giải :

Thay \({u_n}\)=\(\frac{{3n + 1}}{n}\) vào công thức \({v_n} = {u_n} - 3\) để được số hạng tổng quát của \({v_n}\).

Sử dụng phần lưu ý mục 1 là \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\) để tính \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Lời giải chi tiết :

Ta có: \({v_n} = {u_n} - 3\)= \(\frac{{3n + 1}}{n} - 3 = \frac{{3n + 1 - 3n}}{n} = \frac{1}{n}\).

Khi đó, \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\)=\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\).


Câu hỏi:

Luyện tập 2

Chứng minh rằng: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} = - 4\).

Hướng dẫn giải :

Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right] = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} = 0\)

Lời giải chi tiết :

Ta có:

\(\mathop {\lim }\limits_{n \to + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right]\)

=\(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{1 - 4{n^2}}}{{{n^2}}} + 4} \right)\)

=\(\mathop {\lim }\limits_{n \to + \infty } (\frac{{1 - 4{n^2} + 4{n^2}}}{{{n^2}}})\)

\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} = 0\)

Vậy \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} = - 4\).


Câu hỏi:

Hoạt động 3

a, Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\)

b, So sánh \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) và \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\).

Hướng dẫn giải :

a, Tính \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\).

b, Tính \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\) và sử dụng kết quả câu a để so sánh.

Lời giải chi tiết :

a, Ta có: \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6)\)

= \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{6{n^3} + 1 - 6{n^3}}}{{{n^3}}}} \right)\)

= \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\).

Vậy \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\).

b, Ta có: \(\mathop {\lim }\limits_{n \to + \infty } 6 = 6\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\)

Do đó: \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\)= 6

Vậy: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) = \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\).


Câu hỏi:

Luyện tập 3

Tìm \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) và \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)

Hướng dẫn giải :

Tính \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) chia cả tử và mẫu cho \({n^3}\)

Tính \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\) chia cả tử và mẫu cho \({6^n}\).

Lời giải chi tiết :

Ta có: \(\frac{{6 - 7{n^2}}}{{2{n^3} + 9}} = \frac{{6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}}}{{2 + 9.\frac{1}{{{n^3}}}}}\)

Vì lim 6=6, lim 7=7, lim 2= 2, lim 9=9, \(\lim \frac{1}{{{n^3}}} = 0\), \(\lim \frac{1}{n} = 0\) nên:

\(\lim (6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}) = 6.0 + 7.0 = 0\) và \(\lim (2 + 9.\frac{1}{{{n^3}}}) = 2 + 9.0 = 2\)

Vậy \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) \( = 0\).

Ta có: \(\frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\) = \(\frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{4}{6})}^n}}} = \frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{2}{3})}^n}}}\)

Vì \(\lim {(\frac{5}{6})^n} = 0\); \(\lim {(\frac{2}{3})^n} = 0\); \(\lim 2 = 2\); \(\lim 1 = 1\) nên :

\(\lim \left[ {{{(\frac{5}{6})}^n} + 2} \right] = 2\)và \(\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right] = 1\)

Vậy \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)= 2.


Câu hỏi:

Hoạt động 4

1.Chứng minh rằng dãy số (\({u_n}\)) và (\({v_n}\)) với công thức tính số hạng tổng quát lần lượt là \({u_n} = {(\frac{1}{2})^n}\) và \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\) là cấp số nhân mà công bội của chúng có giá trị tuyệt đối nhỏ hơn 1.

2.Cho cấp số nhân (\({u_n}\)) có công bội q. ( \(\left| q \right|

a, Viết công thức tính tổng \({S_n}\) của n số hạng đầu tiên của (\({u_n}\)) theo \({u_1}\) và q.

b, Nếu quy ước S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\), hãy tính S theo \({u_1}\) và q.

Hướng dẫn giải :

1.Tìm công bội q của dãy số (\({u_n}\)) và (\({v_n}\)) để chứng minh là cấp số nhân

2. a, Viết công thức tính \({S_n}\) của cấp số nhân \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)

b, Dựa vào lim\({q^n} = 0\), tính lim \({S_n}\).

Lời giải chi tiết :

1.Chứng minh dãy số (\({u_n}\)) là cấp số nhân

Ta có: \({u_{n + 1}} = {(\frac{1}{2})^{n + 1}}\) ; \({u_n} = {(\frac{1}{2})^n}\)

\( \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{(\frac{1}{2})}^{n + 1}}}}{{{{(\frac{1}{2})}^n}}} = \frac{1}{2}\)

Vậy dãy số (\({u_n}\)) là cấp số nhân với công bội q=\(\frac{1}{2}\).

Chứng minh dãy số (\({v_n}\)) là cấp số nhân

Ta có: \({v_{n + 1}} = 2.{(\frac{{ - 2}}{3})^{n + 1}}\); \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\)

\( \Rightarrow \frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{2.{{(\frac{{ - 2}}{3})}^{n + 1}}}}{{2.{{(\frac{{ - 2}}{3})}^n}}} = \frac{{ - 2}}{3}\)

Vậy dãy số (\({v_n}\)) là cấp số nhân với công bội \(q = \frac{{ - 2}}{3}\).

2. a, Tổng \({S_n}\) của n số hạng đầu tiên của (\({u_n}\)) theo \({u_1}\) và q là: \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)

b, S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\)= \(\lim \frac{{{u_1}.(1 - {q^n})}}{{1 - q}}\)

Ta có lim \({q^n} = 0\)( với \(\left| q \right|

lim\({S_n} = \)\(\frac{{1.{u_1}}}{{1 - q}} = \frac{{{u_1}}}{{1 - q}}\).


Câu hỏi:

Luyện tập 4

Tính tổng cấp số nhân lùi vô hạn S= \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}} + ...\)

Hướng dẫn giải :

S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\) .Áp dụng công thức S=\(\frac{{{u_1}}}{{1 - q}}\) để tính tổng.

Lời giải chi tiết :

Ta có S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\).

S=\(\frac{{{u_1}}}{{1 - q}}\)=\(\frac{1}{{1 - \frac{1}{2}}} = \frac{1}{{\frac{1}{2}}} = 2\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Có thể bạn chưa biêt?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Lời chia sẻ Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Loi Giai SGK